

Energy Outlook and Climate Policy Framework

August 2007

Sherri K. Stuewer Vice President SH&E

This presentation includes forward-looking statements. Actual future conditions (including economic conditions, energy demand, and energy supply) could differ materially due to changes in technology, the development of new supply sources, political events, demographic changes, and other factors discussed herein (and in Item 1 of ExxonMobil's latest report on Form 10-K. This material is not to be reproduced without the permission of Exxon Mobil Corporation.

Global Energy Demand by Fuel

Global CO₂ Emissions from Energy Use

CO₂ Mitigation Options

Climate Change Risk Management

Temperature increase by 2100 with no new GHG policy

Climate Change Risk Management

Temperature increase by 2100 at 550 CO_{2e} stabilization

EMPERATURE.

2.5

GAM

1031

The

SIN OH

15. 22 × 2

S.

1 0 0

G

0 B A L

- 1.5 °

CHANG

Temperature increase by 2100 with no new GHG policy

Efficiency Improvements and New Technology Needed

Policy Framework for Managing Risks of Climate Change

- Long-term objective:
 - Reduce risk of serious impacts at reasonable cost to society
- Near-term objectives:
 - Promote energy efficiency
 - Promote deployment of existing technologies that reduce GHG emissions
 - Support research and development of low-GHG technologies
 - Support climate research to reduce uncertainties and pace response

Emerging Focus on CO₂ Stabilization Scenarios

Penalty on Carbon Emissions

Stabilization scenarios developed for US Climate Change Science Program (Draft 2006) by MIT Joint Program on Science and Policy of Global Change

Costs to Stabilize Vary Significantly Among Models

Price \$/tonne Carbon

	Year	Battelle	EPRI	МІТ
	2020	94	112	259
450	2050	435	589	842
	2100	676	1000	6053
	Year	Battelle	EPRI	MIT
	2020	17	8	75
550	2050	99	37	245
	2100	330	440	1743
	Year	Battelle	EPRI	MIT
	2020	4	3	30
650	2050	18	14	97
	2100	217	160	686

\$100/tonne C	arbon in US	6 implies:
Crude oil	\$60/bbl	+20%
Gasoline	\$2.40/gal	+11%
Utility Coal	\$33/ton	+170%
Electricity	9.6¢/kWh	+18%

DRAFT Stabilization scenarios US Climate Change Science Program (2006)

Policy Design - First Principles

- Ensure a uniform and predictable cost of carbon across the economy
- Maximize use of markets
- Promote global participation
 - Consider priorities of developing world
 - Recognize impacts of imbalances among national policies
- Minimize complexity to reduce administrative costs
- Maximize transparency to companies and consumers
- Adjust in the future to developments in climate science and the economic impacts of climate policies

ExxonMobil Actions to Reduce GHG Emissions

ExconMobil

Avoided GHG emissions in 2006 equivalent to taking more than 2 million cars off the road in the United States.

ExxonMobil Technology Actions to Reduce GHG Emissions

Carbon Capture & Sequestration

Advanced Vehicle & Fuels

Breakthroughs

Global Economics and Energy

Energy Intensity

Energy Outlook: Implications for Carbon

- Global issue
- Wide variety of mitigation options
 - Different scales
 - Different costs
- Significant uncertainties
- But risks warrant action now

Uncertain Risks of Future Climate Change

Economic Insights from Stabilization Scenarios

- Carbon price depends on cost and availability of mitigation technologies
- Price rises with higher reference case emissions, with time, and with more stringent stabilization targets

Carbon Prices for CO₂ Stabilization Scenarios

Existing Technologies Offer Significant Potential

Projected Chinese Emissions with Enhanced Technology

Source: P. Bernstein, S. Tuladhar, and W. D. Montgomery, "Potential For Reducing Carbon Emissions from Non-Annex B Countries through Changes in Technology"

Near-term Policy Options Under Consideration

- Cap and trade system (known emissions quantity, cost uncertain)
 - "Downstream" (permit/allowance to emit GHG gasses)
 - "Upstream" (permit/allowance to sell carbon fuels)
 - Key design issues allocation methodology, safety valve on allowance costs
- Carbon taxes (known cost, emissions quantity uncertain)
 - Key design issues use for revenue
- Standards
 - Buildings
 - Vehicles
 - Major equipment/appliances

Global Climate and Energy Project

gcep.stanford.edu

- Long-term commitment 10 years
- Focused on creating innovative, commercially viable technologies with low GHG emissions
- Unprecedented alliance of scientific researchers and leading companies
- Current project slate:
 - >35 projects at Stanford and in Europe, USA, Japan, Australia
 - Involving over 100 students and post-docs
 - Programs in renewables, carbon capture and storage, advanced combustion, hydrogen

ExxonMobil Proprietary

Stabilization Requires Global Participation

Stabilization scenarios MIT Joint Program on Science and Policy of Global Change

Global Biofuels Production

Cellulosic Ethanol - Potential

Yield and Cost

Process Complexity

Natural Gas Demand

ExonMobil

Natural Gas Supply and Demand

Coal Demand

ExonMobil

Prices Rise Sharply without Global Participation

(Year 2020 Price for Idealized 550 ppm) Index = 100

Prices Rise Sharply without Global Participation

(Year 2020 Price for Idealized 550 ppm) Index = 100

